Asymptotic Shallow Water Models for Internal Waves in a Two-Fluid System with a Free Surface

نویسنده

  • Vincent Duchêne
چکیده

In this paper, we derive asymptotic models for the propagation of two and three-dimensional gravity waves at the free surface and the interface between two layers of immiscible fluids of different densities, over an uneven bottom. We assume the thickness of the upper and lower fluids to be of comparable size, and small compared to the characteristic wavelength of the system (shallow water regimes). Following a method introduced by Bona, Lannes and Saut based on the expansion of the involved Dirichletto-Neumann operators, we are able to give a rigorous justification of classical models for weakly and strongly nonlinear waves, as well as interesting new ones. In particular, we derive linearly well-posed systems in the so called Boussinesq/Boussinesq regime. Furthermore, we establish the consistency of the full Euler system with these models, and deduce the convergence of the solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shallow Water Waves and Solitary Waves

Glossary Deep water A surface wave is said to be in deep water if its wavelength is much shorter than the local water depth. Internal wave A internal wave travels within the interior of a fluid. The maximum velocity and maximum amplitude occur within the fluid or at an internal boundary (interface). Internal waves depend on the density-stratification of the fluid. Shallow water A surface wave i...

متن کامل

Derivation of asymptotic two-dimensional time-dependent equations for ocean wave propagation

A general method for the derivation of asymptotic nonlinear shallow water and deep water models is presented. Starting from a general dimensionless version of the water-wave equations, we reduce the problem to a system of two equations on the surface elevation and the velocity potential at the free surface. These equations involve a Dirichlet-Neumann operator and we show that all the asymptotic...

متن کامل

Mechanical Balance Laws for Boussinesq Models of Surface Water Waves

Depth-integrated long-wave models, such as the shallow-water and Boussinesq equations, are standard fare in the study of small amplitude surface waves in shallow water. While the shallow-water theory features conservation of mass, momentum and energy for smooth solutions, mechanical balance equations are not widely used in Boussinesq scaling, and it appears that the expressions for many of thes...

متن کامل

Shallow water asymptotic models for the propagation of internal waves

We are interested in asymptotic models for the propagation of internal waves at the interface between two shallow layers of immiscible fluid, under the rigid-lid assumption. We review and complete existing works in the literature, in order to offer a unified and comprehensive exposition. Anterior models such as the shallow water and Boussinesq systems, as well as unidirectional models of Camass...

متن کامل

Asymptotic models for the generation of internal waves by a moving ship, and the dead-water phenomenon

5 This paper deals with the dead-water phenomenon, which occurs when a ship sails in a stratified fluid, and experiences an important drag due to waves below the surface. More generally, we study the generation of internal waves by a disturbance moving at constant speed on top of two layers of fluids of different densities. Starting from the full Euler equations, we present several nonlinear as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2010